
How do we handle algorithms that
aren’t embarrassingly parallel?

P0

P1

P3

P2

P8
 P7
P6

P5

P4

P9

Pieces of
data

(on disk)

Read Process Render

Processor 0

Read Process Render

Processor 1

Read Process Render

Processor 2

Parallelized visualization
data flow network

P0
 P3
P2

P5
P4
 P7
P6

P9
P8

P1

Parallel Simulation Code

C
om

m
un

ic
at

io
n Volume rendering and streamlines are

the two most common examples of
non-embarrassingly parallel

algorithms.

MPI-hybrid Parallelism for Volume
Rendering on Large, Multi-core
Systems

Mark Howison, E. Wes Bethel, and Hank Childs
Lawrence Berkeley National Laboratory

EGPGV 2010
Norrköping, Sweden

3

Hybrid Parallelism for Volume Rendering on Large,
Multi-core Platforms

Overview
  Traditional approaches for parallel

visualization may not work well in
future: 100-1000 cores per node.
•  Exascale machines will likely have

O(1M) nodes

  Hybrid-parallelism blends distributed- and shared-memory
parallelism concepts.

  This study:
•  Does hybrid-parallelism work for volume rendering at extreme

concurrency? If so, how well?
•  Experiment to compare performance shows favorable

characteristics of hybrid-parallel, especially at very high
concurrency.

MPI-only

2010

“Not MPI-only”
?’s:
 Will MPI-only work?

Hybrid possible?
 Performance gains?

4

Parallelism

  Mid 1970s-Early 1990s:
•  Vector machines: Cray 1 ... NEC SX
•  Vectorizing Fortran compilers help optimize a[i]=b[i]*x+c.

  Early 1990s-present:
•  The rise of the MPP based on the commodity

microprocessor. Cray T3D, TM CM1, CM2, CM5, etc.
•  Message Passing Interface (MPI) becomes the gold

standard for building/running parallel codes on MPPs.

  Mid 2000s-present:
•  Rise of the multi-core CPU, GPU. AMD Opteron, Intel

Nehalem, Sony Cell BE, NVIDIA G80, etc.
•  Large supercomputers comprised of lots of multi-core

CPUs.
•  Shared memory programming on a node: pthreads,

OpenMP; data parallel languages (CUDA); global
shared memory languages (UPC) and utilities (CAF).

  Early 1990s-Early 2000s:
  Shared memory parallelism (e.g. SGI)

5

Related work in Hybrid Parallelism

  Caveats
•  Relatively new research area, not a great deal of published work.
•  Studies focus on “solvers,” not vis/graphics.
•  State of hybrid parallel visualization: lots of work to do

  Fundamental questions:
•  How to map algorithm onto a complex memory, communication hierarchy?
•  What is the right balance of distributed- vs. shared-memory parallelism?

How does balance impact performance?
  Conclusions of these previous works:

•  What is best? Answer: it depends.
•  Many factors influence performance/scalability:

•  Synchronization overhead.
•  Load balance (intra- and inter-node).
•  Communication overhead and patterns.
•  Memory access patterns.
•  Fixed costs of initialization.
•  Number of runtime threads.

6

This Study

  Hybrid parallelism on visualization: raycasting volume
rendering.
•  Ask same questions the HPC folks do:

•  How to map algorithm to hybrid parallel space?
•  How does performance compare with MPI-only implementation?

  Hybrid-parallel implementation/architecture.
  Performance study.

•  Runs at 216K-way parallel
•  Look at:

•  Costs of initialization.
•  Memory use comparison.
•  Scalability.
•  Absolute runtime.

7

Algorithm Studied: Raycasting VR

  Overview of Levoy’s method
•  For each pixel in image plane:

•  Find intersection of ray and volume
•  Sample data (RGBa) along ray,

integrate samples to compute final
image pixel color

8

Parallelizing Volume Rendering

  Image-space decomposition.
•  Each process works on a disjoint subset of the final image (in

parallel)
•  Processes may access source voxels more than once, will access

a given output pixel only once.
•  Great for shared memory parallelism.

  Object-space decomposition.
•  Each process works on a disjoint subset of the input data (in

parallel).
•  Processes may access output pixels more than once.
•  Output requires image composition (ordering semantics).

9

Hybrid Volume Rendering

  Hybrid volume rendering:
•  Refers to mixture of object- and image-order techniques to do

volume rendering.
•  Most contemporary parallel volume rendering projects are hybrid

volume renderers:
•  Object order – divide data into disjoint chunks, each processor

works on its chunk of data.
•  Image order – parallel compositing algorithm divides work over

final image, each composites over its portion of the final image.
•  A two-stage algorithm, heavy communication load between

stages.

10

Hybrid Parallel Volume Rendering

  Hybrid-parallelism a blend of shared- and distributed-
memory parallelism.

  Details of hybrid parallel implementation described on the
next slide
•  2 Implementations: pthreads, OpenMP.

  Note the difference between hybrid parallel volume
rendering and hybrid volume rendering

11

Hybrid Parallel Volume Rendering

  Our hybrid-parallel architecture:

Shared memory parallel

Distributed-memory parallel

12

Our Experiment

  Thesis: hybrid-parallel will exhibit favorable performance,
resource utilization characteristics compared to traditional
approach.

  How/what to measure?
•  Memory footprint, scalability characteristics, absolute runtime.
•  Across a wide range of concurrencies.

•  Remember: we’re concerned about what happens at extreme
concurrency.

•  Also varied view point to induce different memory access patterns.
  Strong scaling study: hold problem size constant, vary

amount of resources.

13

Experiment: Platform and Source Data

  Platform: JaguarPF, a Cray XT5 system at ORNL
•  18,688 nodes, dual-socket, six-core AMD Opteron (224K cores)

  Source data:
•  Combustion simulation results, hydrogen flame (data courtesy J.

Bell, CCSE, LBNL)
•  Effective AMR resolution: 10243, flattened to 5123, runtime

upscaled to 46083 (to avoid I/O costs).

  Target image size: 46082 image.
•  Want approx 1:1 voxels to pixels.

  Strong scaling study:
•  As we increase the number of procs/cores,

each proc/core works on a smaller-sized problem.
•  Time-to-solution should drop.

14

Experiment – The Unit Test

  Raycasting time: view/data dependent
•  Execute from 10 different prescribed views: forces

with- and cross-grained memory access patterns.
•  Execute 10 times, result is average of all.

  Compositing
•  Five different ratios of compositing PEs to rendering

PEs.

  Measure:
•  Memory footprint right after initialization.
•  Memory footprint for data blocks and halo exchange.
•  Absolute runtime and scalability of raycasting and

compositing.

15

Absolute Runtime

  -hybrid outperforms –only at every concurrency level.
•  At 216K-way parallel, -hybrid is more than twice as fast as –only.
•  Compositing times begin to dominate: communication costs.

16

Scalability – Raycasting Phase

  Near linear scaling since no
interprocess communication.

  -hybrid shows sublinear
scaling due to oblong block
shape.

  -only shows slightly better
than linear due to reduced
work caused by perspective
foreshortening.

17

Scalability – Compositing

  How many compositors to use?
•  Previous work: 1K to 2K for 32K renderers (Peterka, 2009).
•  Our work: above ~46K renderers, 4K to 8K works better.
•  -hybrid cases always performs better: fewer messages.
•  Open question: why the critical point?

18

Memory Use – Data Decomposition

  16GB RAM per node
•  Sets lower bound on concurrency for this problem size: 1728-way

parallel (no virtual memory!).

  Source data (1x), gradient field (3x)
  Want cubic decomposition.

•  1x2x3 block configuration per socket for –only.

  -hybrid has ~6x data per socket than –only
•  Would prefer to run study on 8-core CPUs to maintain cubic shape

19

Memory Use – MPI_Init()

  Per PE memory:
•  About the same at 1728, over 2x at 216000.

  Aggregate memory use:
•  About 6x at 1728, about 12x at 216000.
•  At 216000, -only requires 2GB of memory for initialization per

node!!!

20

Memory Use – Ghost Data

  Two layers of ghost cells required for this problem:
•  One for trilinear interpolation during ray integration loop.
•  Another for computing a gradient field (central differences) for

shading.

  Hybrid approach uses fewer, but larger data blocks.
•  ~40% less memory required for ghost data (smaller surface area)
•  Reduced communication costs

21

Comparing our results to classic hybrid parallel factors

  Factors in hybrid parallelism performance
•  Synchronization overhead.

•  Had two MPI tasks per node, not one, to prevent work spreading
across CPU.

•  Load balance (intra- and inter-node).
•  Studied extensively, comes down to communication

•  Communication overhead and patterns.
•  Hybrid implementation naturally lends itself to superior communication

pattern
•  Memory access patterns.

•  Not presented
•  Fixed costs of initialization.

•  Ghost data generation cost reduced with hybrid parallelism
•  MPI initialization cost reduced with hybrid parallelism

•  Number of runtime threads.
•  Not studied

3 Questions revisited

  Seeing poor indicators @ 216K
  Yes
  Yes

22

MPI-only

2010

“Not MPI-only”
?’s:
 Will MPI-only work?

Hybrid possible?
 Performance gains?

23

Summary of Results

  Absolute runtime: -hybrid twice as fast as –only at 216K-
way parallel.

  Memory footprint: -only requires 12x more memory for
MPI initialization then –hybrid
•  Factor of 6x due to 6x more MPI PEs.
•  Additional factor of 2x at high concurrency, likely a vendor MPI

implementation (an N2 effect).
  Communication traffic:

•  -hybrid performs 40% less communication than -only for ghost
data setup.

•  -only requires 6x the number of messages for compositing.
  Image: 46082 image of a ~45003 dataset generated

using 216,000 cores on JaguarPF in ~0.5s (not counting
I/O time).

Large Vector-Field Visualization,
Theory and Practice:

Large Data and Parallel Visualization
Hank Childs +

D. Pugmire, D. Camp, C. Garth,
G. Weber, S. Ahern, & K. Joy

Lawrence Berkeley National Laboratory /
University of California at Davis

October 25, 2010

Outline

•  Motivation
•  Parallelization strategies
•  Master-slave parallelization
•  Hybrid parallelism

Outline

•  Motivation
•  Parallelization strategies
•  Master-slave parallelization
•  Hybrid parallelism

Supercomputers are generating large data sets
that often require parallelized postprocessing.

217 pin reactor cooling simulation.
Nek5000 simulation on ¼ of Argonne BG/P.
Image credit: Paul Fischer using VisIt

1 billion element
unstructured mesh

Communication between “channels”
are a key factor in effective cooling.

Particle advection can be used to
study communication properties.

This sort of analysis requires many
particles to be statistically significant.

Place thousands of particles

in one channel

Observe which channels the

 particles pass through

Observe where particles come out

(compare with experimental data)

How can we parallelize
this process?

Repeat for other channels

Outline

•  Motivation
•  Parallelization strategies
•  Master-slave parallelization
•  Hybrid parallelism

Particle advection:
Four dimensions of complexity

Data set size

vs

Seed set distribution

vs

Seed set size

vs

Vector field complexity

Do we need parallel processing?
When? How complex?

•  Data set size?

•  Not enough!

•  Large #ʼs of particles?

Parallelization for small data and a
large number of particles.

Read Advect Render

Processor 1

Read Advect Render

Processor 2

Read Advect Render

Processor 0

Parallelized visualization
data flow network

File

Simulation
code

GPU-accelerated approaches
follow a variant of this model.

The key is that the data is small
enough that it can fit in memory.

This scheme is referred to as
parallelizing-over-particles.

Do we need advanced parallelization
techniques? When?

•  Data set size?

•  Not enough!

•  Large #ʼs of particles?

•  Need to parallelize, but embarrassingly parallel OK

•  Large #ʼs of particles + large data set sizes

Parallelization for large data with
good “distribution”.

P0

P1

P3

P2

P8
 P7
P6

P5

P4

P9

Pieces of
data

(on disk)

P0
 P3
P2

P5
P4
 P7
P6

P9
P8

P1

Parallel Simulation Code

Read Advect Render

Processor 1

Read Advect Render

Processor 2

Read Advect Render

Processor 0

Parallelized visualization
data flow network

This scheme is referred to as
parallelizing-over-data.

Do we need advanced parallelization
techniques? When?

•  Data set size?

•  Not enough!

•  Large #ʼs of particles?

•  Need to parallelize, but embarrassingly parallel OK

•  Large #ʼs of particles + large data set sizes

•  Need to parallelize, simple schemes may be OK

•  Large #ʼs of particles + large data set sizes +
(bad distribution OR complex vector field)

•  Need smart algorithm for parallelization

Parallelization with big data & lots of
seed points & bad distribution

  Two extremes:
•  Partition data over processors

and pass particles amongst
processors
− Parallel inefficiency!

•  Partition seed points over
processors and process
necessary data for advection
− Redundant I/O!

Notional streamline
example

P0 P0 P0 P0 P0

P1 P1 P1 P1 P1

P2 P2 P2 P2 P2

P3 P3 P3 P3 P3

P4 P4 P4 P4 P4

P0

P1
P2

P3
P4

Parallelizing Over I/O Efficiency
Data Good Bad
Particles Bad Good

Parallelize
over particles

Parallelize
over data Hybrid algorithms

Outline

•  Motivation
•  Parallelization strategies
•  Master-slave parallelization
•  Hybrid parallelism

The master-slave algorithm is an
example of a hybrid technique.

•  “Scalable Computation of Streamlines on Very Large
Datasets”, Pugmire, Childs, Garth, Ahern, Weber. SC09
•  Many of the following slides compliments of Dave Pugmire.

•  Algorithm adapts during runtime to avoid pitfalls of
parallelize-over-data and parallelize-over-particles.
•  Nice property for production visualization tools.

•  Implemented inside VisIt visualization and analysis
package.

Master-Slave Hybrid Algorithm
•  Divide processors into groups of N

•  Uniformly distribute seed points to each group

Master:
-  Monitor workload
-  Make decisions to optimize
resource utilization

Slaves:
-  Respond to commands
from Master
-  Report status when work
complete

Master Process Pseudocode

Master()
{
 while (! done)
 {
 if (NewStatusFromAnySlave())
 {
 commands = DetermineMostEfficientCommand()

 for cmd in commands
 SendCommandToSlaves(cmd)
 }
 }
}

What are the possible
commands?

Commands that can be issued by master

Master Slave

Slave is given a streamline that
is contained in a block that is
already loaded

1. Assign / Loaded Block
2. Assign / Unloaded Block

3. Handle OOB / Load
4. Handle OOB / Send

OOB = out of bounds

Master Slave

Slave is given a streamline
and loads the block

Commands that can be issued by master

1. Assign / Loaded Block
2. Assign / Unloaded Block

3. Handle OOB / Load
4. Handle OOB / Send

OOB = out of bounds

Master Slave

Load

Slave is instructed to load a
block. The streamline in that
block can then be computed.

Commands that can be issued by master

1. Assign / Loaded Block
2. Assign / Unloaded Block

3. Handle OOB / Load
4. Handle OOB / Send

OOB = out of bounds

Master Slave

Send to J

Slave J

Slave is instructed to send a
streamline to another slave that
has loaded the block

Commands that can be issued by master

1. Assign / Loaded Block
2. Assign / Unloaded Block

3. Handle OOB / Load
4. Handle OOB / Send

OOB = out of bounds

Master Process Pseudocode

Master()
{
 while (! done)
 {
 if (NewStatusFromAnySlave())
 {
 commands = DetermineMostEfficientCommand()

 for cmd in commands
 SendCommandToSlaves(cmd)
 }
 }
} * See SC 09 paper

for details

Master-slave in action

P0 P0

P1

P1
P2

P2 P3
P4

Iteration Action

0 P0 reads B0,
P3 reads B1

1 P1 passes
points to P0,
P4 passes
points to P3,
P2 reads B0

0: Read

0: Read

Notional streamline
example

1: Pass

1: Pass
1: Read

-  When to pass and when to read?
-  How to coordinate communication? Status?
Efficiently?

Algorithm Test Cases

- Core collapse supernova simulation
- Magnetic confinement fusion simulation
- Hydraulic flow simulation

Particles Data Hybrid

Workload distribution in supernova
simulation

Parallelization by:

Colored by processor doing integration

Workload distribution in parallelize-over-
particles

Too much I/O

Workload distribution in parallelize-over-
data

Starvation

Workload distribution in hybrid algorithm

Just right

Comparison of workload distribution

Astrophysics Test Case:
Total time to compute 20,000 Streamlines

S
ec

on
ds

S
ec

on
ds

Number of procs Number of procs

Uniform
Seeding

Non-uniform
Seeding

Data Part-
icles

Hybrid

Astrophysics Test Case:
Number of blocks loaded

B
lo

ck
s

lo
ad

ed

B
lo

ck
s

lo
ad

ed

Number of procs Number of procs

Data Part-
icles

Hybrid

Uniform
Seeding

Non-uniform
Seeding

Outline

•  Motivation
•  Parallelization strategies
•  Master-slave parallelization
•  Hybrid parallelism

Are today’s algorithms going to fit well on
tomorrow’s machines?

  Traditional approach for parallel
visualization – 1 core per MPI task – may
not work well on future supercomputers,
which will have 100-1000 cores per node.
•  Exascale machines will likely have

O(1M) nodes … and we anticipate in situ
particle advection.

Hybrid parallelism blends distributed- and
shared-memory parallelism concepts.

The word “hybrid” is being used in two
contexts…

•  The master-slave algorithm is a hybrid algorithm,
sharing concepts from both parallelization-over-data and
parallelization-over-seeds.

•  Hybrid parallelism involves using a mix of shared and
distributed memory techniques, e.g. MPI + pthreads or
MPI+CUDA.

•  One could think about implement a hybrid particle
advection algorithm in a hybrid parallel setting.

What can we learn from a hybrid
parallel study?

•  How do we implement parallel particle advection
algorithms in a hybrid parallel setting?

•  How do they perform?
•  Which algorithms perform better? How much better?
•  Why?

Streamline Integration Using MPI-Hybrid
Parallelism on a Large Multi-Core Architecture

by David Camp, Christoph Garth,
Hank Childs, Dave Pugmire and Ken Joy

Accepted to TVCG

Streamline integration using MPI-hybrid
parallelism on a large multi-core architecture

•  Implement parallelize-over-data and parallelize-over-
particles in a hybrid parallel setting (MPI + pthreads)
•  Did not study the master-slave algorithm

•  Run series of tests on NERSC Franklin machine (Cray)
•  Compare 128 MPI tasks (non-hybrid)

 vs 32 MPI tasks / 4 cores per task (hybrid)
•  12 test cases: large vs small # of seeds

 uniform vs non-uniform seed locations
 3 data sets

Hybrid parallelism for parallelize-over-data

•  Expected benefits:
•  Less communication and communicators
•  Should be able to avoid starvation by

sharing data within a group.

Starvation

Measuring the benefits of hybrid
parallelism for parallelize-over-data

Gantt chart for parallelize-over-data

Hybrid parallelism for parallelize-over-
particles

•  Expected benefits:
•  Only need to read blocks once for node, instead of once

for core.
•  Larger cache allows for reduced reads
•  “Long” paths automatically shared among cores on node

Measuring the benefits of hybrid
parallelism for parallelize-over-particles

Gantt chart for parallelize-over-particles

Summary of Hybrid Parallelism Study

•  Hybrid parallelism appears to be extremely beneficial to
particle advection.

•  We believe the parallelize-over-data results are highly
relevant to the in situ use case.

•  Although we didn’t implement the master-slave algorithm,
we believe the benefits shown at the spectrum extremes
provide good evidence that hybrid algorithms will also
benefit.

•  Implemented on VisIt branch, goal to integrate into VisIt
proper in the coming months.

Summary for Large Data and
Parallelization

•  The type of parallelization required will vary based on
data set size, number of seeds, seed locations, and
vector field complexity

•  Parallelization may occur via parallelization-over-data,
parallelization-over-particles, or somewhere in between
(master-slave). Hybrid algorithms have the opportunity to
de-emphasize the pitfalls of the traditional techniques.

•  Hybrid parallelism appears to be very beneficial.
•  Note that I said nothing about time-varying data…

